122 research outputs found

    Semantic Image Retrieval via Active Grounding of Visual Situations

    Full text link
    We describe a novel architecture for semantic image retrieval---in particular, retrieval of instances of visual situations. Visual situations are concepts such as "a boxing match," "walking the dog," "a crowd waiting for a bus," or "a game of ping-pong," whose instantiations in images are linked more by their common spatial and semantic structure than by low-level visual similarity. Given a query situation description, our architecture---called Situate---learns models capturing the visual features of expected objects as well the expected spatial configuration of relationships among objects. Given a new image, Situate uses these models in an attempt to ground (i.e., to create a bounding box locating) each expected component of the situation in the image via an active search procedure. Situate uses the resulting grounding to compute a score indicating the degree to which the new image is judged to contain an instance of the situation. Such scores can be used to rank images in a collection as part of a retrieval system. In the preliminary study described here, we demonstrate the promise of this system by comparing Situate's performance with that of two baseline methods, as well as with a related semantic image-retrieval system based on "scene graphs.

    How Morphological Constraints Affect Axonal Polarity in Mouse Neurons

    Get PDF
    Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to physical constraints might be the first level of regulation during neuronal development, primary to biochemical and guidance regulations

    Arginine Metabolism by Macrophages Promotes Cardiac and Muscle Fibrosis in mdx Muscular Dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD.We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as beneficial effects of short-term treatments.Our findings demonstrate that arginine metabolism by arginase promotes fibrosis of muscle in muscular dystrophy and contributes to kyphosis. Our findings also show that long-term, dietary supplementation with arginine exacerbates fibrosis of dystrophic heart and muscles. Thus, commonly-practiced dietary supplementation with arginine by DMD patients has potential risk for increasing pathology when performed for long periods, despite reports of benefits acquired with short-term supplementation

    Transmission of highly virulent community-associated MRSA ST93 and livestock-associated MRSA ST398 between humans and pigs in Australia

    Get PDF
    Pigs have been recognised as a reservoir of livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Europe, Asia and North America. However, little is known about the presence and distribution of MRSA in the Australian pig population and pig industry. This study describes the presence, distribution and molecular characteristics of the human adapted Australian CA-MRSA ST93 isolated from pigs, people, and the environment within a piggery. Isolates were subjected to antibiotic susceptibility testing, DNA microarray, whole genome sequencing, multi locus sequence typing, virulence and resistance gene characterization and phylogenetic analysis. MRSA were isolated from 60% (n = 52) of farm workers where 84% of isolates returned ST93 and the rest ST398. Of the thirty-one pig isolates tested further, an equal number of ST398 and ST93 (15 each) and one as ST30-V were identified. Four of six environmental isolates were identified as ST93 and two as ST398. This study has identified for the first time in Australia the occurrence of CA-MRSA ST93 and LA-MRSA ST398 amongst farm workers, pigs, and the farm environment. Comparative genome analysis indicates that ST398 is likely to have been introduced into Australia from Europe or North America. This study also reports the first linezolid resistant MRSA isolated in Australia

    Association of CLEC16A with human common variable immunodeficiency disorder and role in murine B cells

    Get PDF
    Common variable immunodeficiency disorder (CVID) is the most common symptomatic primary immunodeficiency in adults, characterized by B-cell abnormalities and inadequate antibody response. CVID patients have considerable autoimmune comorbidity and we therefore hypothesized that genetic susceptibility to CVID may overlap with autoimmune disorders. Here, in the largest genetic study performed in CVID to date, we compare 778 CVID cases with 10, 999 controls across 123, 127 single-nucleotide polymorphisms (SNPs) on the Immunochip. We identify the first non-HLA genome-wide significant risk locus at CLEC16A (rs17806056, P = 2.0 x 10(-9)) and confirm the previously reported human leukocyte antigen (HLA) associations on chromosome 6p21 (rs1049225, P = 4.8 x 10(-16)). Clec16a knockdown (KD) mice showed reduced number of B cells and elevated IgM levels compared with controls, suggesting that CLEC16A may be involved in immune regulatory pathways of relevance to CVID. In conclusion, the CLEC16A associations in CVID represent the first robust evidence of non-HLA associations in this immunodeficiency condition

    Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish

    Get PDF
    Aminoacyl tRNA synthetases (ARSs) link specific amino acids with their cognate transfer RNAs in a critical early step of protein translation. Mutations in ARSs have emerged as a cause of recessive, often complex neurological disease traits. Here we report an allelic series consisting of seven novel and two previously reported biallelic variants in valyl-tRNA synthetase (VARS) in ten patients with a developmental encephalopathy with microcephaly, often associated with early-onset epilepsy. In silico, in vitro, and yeast complementation assays demonstrate that the underlying pathomechanism of these mutations is most likely a loss of protein function. Zebrafish modeling accurately recapitulated some of the key neurological disease traits. These results provide both genetic and biological insights into neurodevelopmental disease and pave the way for further in-depth research on ARS related recessive disorders and precision therapies

    Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes

    Get PDF
    Penetrance of variants in monogenic disease and clinical utility of common polygenic variation has not been well explored on a large-scale. Here, the authors use exome sequencing data from 77,184 individuals to generate penetrance estimates and assess the utility of polygenic variation in risk prediction of monogenic variants
    corecore